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Abstract 

Diffuse intensity absences, on reciprocal planes that 
pass through the Bragg positions, have been observed 
in diffraction patterns of Zr0.61Yo.39Ol.81 and 
(Ta2Os).7%(WO3). These absences, occurring on 
planes normal to near-neighbour directions and high- 
lighted by sheets of diffuse intensity on either side, 
are shown to result naturally from atomic size effect 
distortions. The origins of these diffuse features are 
explained, using both real-space and modulation- 
wave approaches, by concentrating on a Monte Carlo 
simulated two-dimensional binary alloy. These absen- 
ces, which should be characteristic of systems that 
distort via the size effect, result from intensity com- 
ponents that do not depend on scattering-factor 
differences and so will be most prominent when the 
atomic species have similar scattering powers, thus 
suppressin~ the normal size effect intensity com- 
ponent [Warren, Averbach & Roberts (1951). J. Appl. 
Phys. 22, 1493-1496]. 

I. Introduction 

The problem of adequately measuring and then cor- 
rectly interpreting the diffraction patterns of disor- 
dered materials has occupied many crystallographers 
for a very long time (Warren, Averbach & Roberts, 
1951; Cowley, 1968; Krivoglaz, 1969; Borie& Sparks, 
1971, Hayakawa & Cohen, 1975, Yamamoto & 
Nakazawa, 1982; Welberry, 1986; Welberry, Withers 
& Osborn, 1990). Usually, the information most 
sought after from such studies is the type and extent 
of atomic ordering on the various sublattices making 
up the average structure unit cell. Such atomic order- 
ing, or compositional modulation, gives rise to 
sinusoidal variations of diffuse intensity in reciprocal 
space, which, if it were possible to measure in isola- 
tion, could be back Fourier transformed to yield the 
desired real-space ordering parameters. The direct 
extraction of such information from adequately 
measured diffraction patterns is, however, almost 
invariably obscured by the fact that atomic ordering 
(i.e. compositional modulation) is always accom- 
panied by some degree of structural relaxation (i.e. 
static atomic displacements) arising from atoms of 
differing size occupying a single sublattice. The 
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'atomic size effect' is a term used to describe the 
additional effects upon the diffraction pattern of such 
structural relaxation. 

In the context of binary substitutionally disordered 
alloys, a characteristic feature of diffraction patterns 
due to the atomic size effect was first described by 
Warren et al. (1951). This is the transfer of diffuse 
intensity from regions on one (e.g. the high-angle) 
side of Bragg peaks to regions on the other (e.g. the 
low-angle) side. More recently, analogous effects have 
been investigated for molecular crystals (Khanna & 
Welberry, 1990). Early theories of diffraction from 
disordered alloys ignored the effects of structural 
relaxation, but subsequent developments of the 
theory, notably by Borie (1957, 1959), Cowley (1968), 
Boric & Sparks (1971) and Hayakawa & Cohen 
(1975), included the effects of structural relaxation 
and hence were also able to provide a description of 
these effects. 

The purpose of this paper is twofold: firstly to 
report the experimental observation of another 
feature in diffraction patterns due to the effect of 
atomic size - namely the existence of a very charac- 
teristic and well defined absence of diffuse intensity 
along certain planes of reciprocal space - and 
secondly to provide an interpretation of this 
observation. 

2. Example systems 

Two recent examples of planar diffuse absences from 
our own work are shown in Figs. 1 and 2. Fig. 1 shows 
a grey-scale image of the reciprocal section 0.4c* of 
a cubic yttria stabilized zirconia (Zro.61Yo.39Oi.8o5) 
measured using a single-crystal X-ray diffractometer 
system equipped with a position-sensitive detector 
(Osborn & Welberry, 1990). This pattern is obviously 
very complex with a whole variety of different and 
distinctive features. It is not our purpose in this paper 
to focus upon disorder in Y203-stabilized zirconia 
(this will be done elsewhere) but rather to concentrate 
upon the very distinctive (110) dark lines (i.e. lines 
where the diffuse intensity is absent), which can be 
shown, by comparison with other reciprocal sections, 
to result from the intersection of dark planes normal 
to (110). This is the direction that connects nearest- 
neighbour metal atoms in stabilized cubic zirconia. 
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Similar features can be seen in Fig. 2, which dis- 
plays an electron diffraction pattern taken approxi- 
mately 7 ° from the [010] subcell zone axis of the 
incommensurately modulated Ta205.7%(WO3) solid 
solution (Schmid, Withers & Thompson,  1992). 

Fig. 1. The 0.4c* diffuse-scattering section of a cubic stabilized 
zirconia (Zro.6tYo.39Ol.st) measured using Cu Ka X-radiation. 
a* is horizontal and b* is vertical. Note the dark lines running 
along (110) directions, which correspond to diffuse scattering 
absences on planes normal to (110). 

Fig. 2. An electron diffraction pattern taken approximately 7* off 
the [010] subcell zone axis of (Ta2Os).7%(WOa). The c* axis is 
vertical. Note the two diffuse sheets of intensity perpendicular 
to c* surrounding a region where the diffuse intensity is absent. 

Notice the characteristic diffuse intensity distribution 
consisting of  two diffuse sheets of intensity perpen- 
dicular to [001] - a direction that connects nearest- 
neighbour metal atoms in this material - split on 
either side of  the dark G + 0c* planes of reciprocal 
space. 

A Monte Carlo simulation and optical-diffraction 
study by one of us (Welberry, 1986) on the atomic 
size effect in a hypothetical disordered two- 
dimensional binary alloy found an analogous 
effect - diffuse absences along lines in the diffraction 
pattern normal to the directions connecting nearest 
neighbours. These features were, however, only 
clearly visible in patterns where the scattering power 
of the two species were made identical. As an aid to 
the current investigation, this simulation was repeated 
but this time halted after fewer Monte Carlo steps, 
as this creates more pronounced diffuse absences. 

Distortions were applied to the hypothetical alloy 
by assuming a preferred near-neighbour distance for 
A A - ,  A B -  and BB-type pairs of the form 

rAA = ao(1 + EAA), rAB = ao(1 + F.AB), 
(1) 

ras = ao(1 + can), 

where ao is the lattice parameter and eAA, e.An and 
eaa were chosen to be +0.05, 0.0 and -0.05 respec- 
tively. The atom positions were allowed to relax off 
their ideal lattice sites using local energies derived 
from a Hooke's  law force model that tends to restore 
atom pairs to these preferred distances. A two- 
dimensional square lattice of dimension 512x512 
unit cells with concentration CA = 0.5 was used. The 
A and B atoms were randomly placed on the lattice 
so as to avoid ordering effects in the diffraction pattern 
and 50 Monte Carlo steps at 'zero temperature '  were 
performed. A Monte Carlo step is defined by each 
atom being visited in the simulation once on average. 
(For full details of the Monte Carlo simulation see 
Welberry, 1986.) 

Fig. 3 shows a diffuse scattering pattern that was 
calculated by using a method that involves direct 
Fourier summation over all atoms in the simulation 
(Butler & Welberry, 1992). In the calculation, atom 
positions are accurate to 0.1% of the cell dimension 
and scattering factors of  Zn and Cu were used respec- 
tively for the A and B atoms (a choice made simply 
because Cu and Zn, like Zr -Y and Ta-W, differ in 
scattering power by a single electron). This computed 
pattern is dominated by narrow dark lines running 
along rows of Bragg reflections, perpendicular to the 
directions connecting near neighbours and high- 
lighted on either side by bands of enhanced diffuse 
intensity - much like the examples of Figs. 1 and 2 
- indicating that the diffuse absences in all three 
patterns arise from similar processes. 

The origin of this aspect of the atomic size effect 
can best be explained by concentrating on this two- 
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dimensional simulated alloy for which it is possible 
to isolate some of the contributions to the resultant 
diffraction pattern, for example, the purely displacive 
contribution, from those dependent  on local ordering. 
Two distinct methods of description are employed 
here, a real-space (correlation) approach and a 
reciprocal-space (modulation-wave) approach.  

3. Theoret ical  approaches 

Two basic theoretical approaches are commonly used 
for describing disordered materials. The first is a 
real-space approach based upon a correlation or 
local-order description of disorder as commonly used, 
for example, in studies of  alloys (Cenedese, Bley & 
Lefebvre, 1984; Matsubara & Cohen, 1985). The 
second is a reciprocal-space approach based upon 
the notion of compositional and displacive modula- 
tion waves (Krivoglaz, 1969; de Fontaine, 1972, 1973). 
Generally speaking, either approach should be cap- 
able of describing the same phenomena.  In a specific 
case, however, there may well be arguments (such as 
the sharpness or otherwise of the diffuse features in 
reciprocal space) to suggest that one or other 
approach might be more appropriate or give more 
insight (Welberry & Withers, 1990). 
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Fig. 3. Computed diffraction pattern (using direct Fourier summa- 
tion techniques) of a two-dimensional square-lattice Monte 
Carlo simulation of size-effect distortions in a binary alloy. X-ray 
scattering factors of Cu and Zn were used for the two atom 
types. This figure demonstrates two diffuse features expected 
from alloys with size-effect distortions: diffuse absences on 
planes normal to the near-neighbour directions in the alloy 
(highlighted by the two horizontal arrows), and 'bow-tie'dike 
features most prominent along directions where h, = h 2 (high- 
lighted by arrows at 45* to the horizontal). 

The mathematical notation differs somewhat for 
the two approaches,  following the conventions adop- 
ted in the current literature. The primary difference 
is in the labelling of the reciprocal coordinates, where 
continuous variables h~, h2 and h3 are used in the 
correlation approach and the sum of a reciprocal- 
lattice vector, G, and a vector, q, inside the first 
Brillouin zone is used in the modulation-wave 
approach. 

3.1. A correlation approach 

A general description of diffuse scattering that 
allows for both short-range compositional order and 
local atomic distortions can be obtained (following 
Boric & Sparks, 1971) by expanding the exponential 
in the kinematic scattering equation to second 
moments in displacement: 

N N 

I =  ~ ~" f m f , , e x p [ i k ' ( R m + u " - R n - u , ) ]  
m = l  n = l  

N IV 

= Y Y f"f .  e x p [ i k . ( R m - R . ) ]  
m = l  n = l  

x {1 + ik" ( u " -  u , , ) -  ½[k" (Urn-  U,,)]2}. (2) 

Here, I is the scattered intensity and fm is the scatter- 
ing factor of the atom (m) associated with a lattice 
site at the location Rm and which is displaced from 
its site by the small amount  u,,. For a binary alloy 
the diffuse scattered intensity, lo,  can be derived from 
(2) (Schwartz & Cohen, 1987). Following the notation 
of Georgopoulos & Cohen (1977) and restricting the 
form to two dimensions, we have 

Io( h,, h2) = CACB(fA -- f .)2{ ISRO + h,( rIQ~ A + {Q~") 

+ h2(rlQAy A + ~Ogya) 

+ n,~n'2" 2,,,,,,_~x 1- 2n~Rx ~8 + ~'~R~ 8) 
2 2 A A  A B  7 , 2 R  B B ~  +h2( 'r  / Ry + 2"O~Ry + , . .y , 

2 ~ A B  2 B B  2n~'S~y + ~" S~y )}, +hnh2(~ Sxy + (3) 

where  hi and h2 are continuous reciprocal-space coor- 
dinates, CA and cs are the atomic concentrations of 
the A- and B-type atoms, 7? and ~" are scattering-factor 
ratios, 

r l= fA / ( fA- - fa ) ,  ~=fB/ ( fA- - fB) ,  (4) 

and the component  intensities are given by the sums 
A B  ISRO = ~ ~ at,.  COS (21rhll) cos (2wh2m), (5a) 

I , .  

Q~'~ -2"tr E E (CA/C8 + A B x ,  A A ,  ~-  Ol im  )~  X l , .  ) 
I , .  

x sin (2¢rhll) cos (2¢rh2m), (5b) 
A B  A A R~AA = 4"tr2 ~ E (CA/CB+a,m)(XoX,,,,) 

I , .  

x cos (27rh11) cos (21rh2m), (5c) 
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RAS=4~r2 Ey.  (1 A8 A S -'~,~ )(XoX,~) 
t m 

x.cos (2Irhl/) cos (2~rh2m), (5d) 
A S  A A s~A~r =--8*r2 X X (CA/CB+at,")(Xoyt,,) 

! ," 

x sin (27rhl/) sin (2,rh2rn) (5e) 
A B  etc. at,, are the Warren-Cowley short-range-order 

(xt,") is the average difference between parameters, aA 
displacements (along x) of an A-type atom at the 
end of a lattice vector (Irn) and that of an A atom at 

(Xoyt,") is the average value of the its origin and A A 
product of the displacement along x of an A atom 
at the origin of a lattice vector (lm) and the displace- 
ment along y of an A atom at the end of the vector. 
The intensity ISRO thus describes the diffuse scattering 
associated with local chemical correlations, the 
intensity components involving Q terms describe 
scattering due to correlations between the average 
length of an interatomic vector and the occupation 
of the sites at the ends of the vector and those involv- 
ing the R and S sums describe diffuse features associ- 
ated with correlations in displacement of atom pairs 
separated by a lattice vector (Ira). Inspection of (3) 
and (4) demonstrates that both the short-range-order 
diffuse scattering, ISRO, and the Warren size-effect 
scattering, given by the Q intensity components, van- 
ish with the scattering-factor difference ( fA- - f s ) .  For 
alloys in which the scattering is mainly associated 
with atoms that have similar atomic scattering factors, 
as is the case for the three examples given in this 
paper, the diffuse intensities associated with R and 
S terms will dominate the measured diffraction 
pattern. 

To demonstrate the origins of the dark lines ob- 
served in the diffraction patterns of Figs. 1 and 2, we 
will concentrate on the simple two-dimensional struc- 
tural simulation from which the diffraction pattern 
of Fig. 3 is derived and which shows clearly this same 
diffraction effect. 

Equations (3) and (5) can be written for this case 
AS by setting the order parameters, a t~ , to zero and 

neglecting those terms that depend on differences in 
the scattering factors, 

i D ( h l ,  h 2  ) 2 2 2 , , 2 ! =417" f {h~gx-Eh~hESxy+h2Ry},  (6) 

where 

= [cA(XoX,~) R'x E E  2 A A  A B  + 2 C A C S ( X o X l m ) +  2 S B c~(XoX~,.)] 
l m 

× cos (2~hl/) cos (2rrh2m), (7a) 

Srxy = ~ [CA(Xoyl,")+2CACS(XoYtm)+Cs(Xoytm)]2 A A A S  2 B B 
! m 

x sin (27rhl/) sin (27rh2m), (7b) 

[ca(YoYlm) 
R y = E E  2 A A A S 2 B S ' + 2CACB(yo Ytm) + cs(yo Ylm)] 

! ra 

x cos (27rhl/) cos (2ZrhEm). (7c) 

It is possible to compute the diffraction pattern from 
the two-dimensional simulated alloy of Fig. 3 by 
simply substituting the values of all correlation par- 
ameters into (7), but this process would not help in 
understanding the origin of these observed diffraction 
effects. Instead, a more limited number of correlation 
parameters, whose values are indicative of general 
distortion effects, should be concentrated upon. 

Consider the diffuse scattering along the reciprocal 
line h E = 0,  which is a section normal to, and which 
passes through, some of the 'dark lines' in Fig. 3. For 
this section, (6) and (7) reduce to 

Io(h~, 0) 4,n-EfEh 2 ~ ~ 2 A A A B = 2CACB(Xo Xtm) [ C A ( X o X l m )  + 
l ," 

2 B B + cB(XoXt,")] cos (21rh~/). (8) 

The origins of the dark lines in Fig. 3 and thus the 
dark planes of the stabilized zirconia and tantalum 
tungstate diffraction patterns must lie in the behaviour 
of the correlation parameters A A A B (XoXtm), (XoXt,"), 

B B (XoXl,") since these features pass through the 
reciprocal section described by (8). Although this 
equation implies summation over all possible inter- 
atomic vectors (lm), the contribution from large vec- 
tors will tend toward zero (since correlations respon- 
sible for diffuse intensities are by definition local). 
Of the shorter vectors remaining it might be expected 
that only a few will be responsible for the observed 
diffraction effects. The diffuse intensity, composed of 
only a small number of such correlations, could be 
easily described using this approach. 

From the Monte Carlo simulated structure it is 
possible to compute the displacement correlations 
contributing to the intensity and so determine directly 
which ones are large and thus responsible for the 
dark lines. In Table l (a )  a listing of the three correla- 
tion coefficients contained in (8) (normalized such 
that the self correlation is unity) as a function of the 
interatomic vector is presented. Correlations for all 
lattice vectors out to (l, m) = (10, 10) were computed 
but only those that are greater than 1% are presented. 
Essentially, the only nonzero strain correlations are 
those with interatomic vectors along the direction that 
the Hooke's law force acts. Only two vectors not along 
the direction m = 0 have values greater than 1% [the 
(0, 1) and (1, 1) vectors] but these are quite small. 
Correlations along the m = 0 direction are large for 
nearest (/, 0) vectors and fall off gradually until 
vanishing around (l, m) - (10, 0). In the last column 
of Table l (a )  the term in square brackets in (8) - the 
coefficient of the cosine function - has been com- 
puted. 

We see that the first and second cosine coefficients 
are relatively large and positive and the rest are nega- 
tive and decay in magnitude until disappearing at 
about (/, m) = (10, 0). The first two positive 
coefficients will contribute broad diffuse peaks of 
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intensity centred about integer values of h~ and the 
string of negative coefficients will subtract intensity 
from the centre of these diffuse peaks. We are thus 
left with diffuse bands around integer hi positions 
and dark lines that run down the middle of these 
bands. This fact is demonstrated in Fig. 4, where the 
cosine summation of (8) has been computed using 
only the 12 coefficients presented in the last column 
of Table l (a ) .  This can be compared with the diffuse 
intensity computed exactly by direct Fourier summa- 
tion over the entire simulated crystal using the method 
of Butler & Welberry (1992), which does not suffer 
from any of the approximations made in deriving (3). (a) gx 

A B A A (In both of these computations, f A  and f~ were taken l, m (Xo x~m) (Xo Xtm) 
to be that of Cu,to avoid any influence from the Laue 1, 0 +0.92 +o.38 
monotonic and Warren size-effect intensities.) The 2,0 +0.23 -0.01 

3, 0 -0 .11 - 0 . 2 0  broad diffuse maxima with sharp reduction in 4 ,0  -0.21 -0.25 
intensity at integer reciprocal POsitions can be clearly 5, 0 -0.21 -0.22 
seen. Qualitatively, this correlation approach de- 6,0 -0.17 -0.17 

7 ,0  - 0 . 1 2  -0 .12  
scribes very well the dark lines in this diffraction 8,0 -0.07 -0.08 
pattern and, except for the height of the diffuse bands 9, 0 -0.04 -0.04 
on either side of the dark line, the quantitative agree- 10, 0 -0.02 -0.02 
ment is good as well. The approximation made in o, 1 +0.00 -0.03 1, 1 -0 .00  -0 .01 

truncating the exponential at second moments in dis- (b) Sxy 
placement is responsible for any differences,* so if 

A B A A 
atomic distortions smaller than the 3.5% (root-mean- l, m (Xo Ytm) (Xo Yt,,,) 
square) average of this particular simulation were 1,1 -0.28 -0.28 
used, the quantitative differences would be less 2,1 -0.18 -0.19 3, 1 -0 .11 - 0 . 1 0  
pronounced. 4,1 -0.06 -0.06 

5, 1 - 0 . 0 4  -0 .02  We now demonstrate why this simple force model 6,1 -0.02 -0.01 
produces displacement correlations with the observed 2, 2 -0.12 -0.13 
behaviour. A negative value of the displacement cor- 3, 2 -0.08 -0.07 

4, 2 - 0 . 0 4  - 0 . 0 4  
5, 2 -0.02 -0.02 
3, 3 -0 .05  -0 .05  
4, 3 -0.02 -0.03 
4, 4 -0 .02  -0 .01 

* Including the rest of  the small correlation parameters will 
change the computed pattern only slightly. 

Table 1. Correlation parameters from the simulated 
binary alloy that apply to ( a ) Rx and ( b ) Sxy diffuse 

intensity components 

The last column shows the computed value of  the term in square 
brackets in equation (8). Note that 

A B (X o Y t,,) = (xBo YBm) /[  ( ( xA )2)( (yB)2) ] 1/2 

etc. and 

[ ]  ~ AA A~ 2 ~ 
= [CA(Xo Ytm) + 2CACB(Xo y~,,) + CB(Xo Yt,,,)]- 

The values of  ((xA) 2) and ((xa)  2) for this simulated crystal are 
12.0 and 11.5 x lO-4a 2 respectively. 

[] 
B B (xoxtm) (x 104a02 ) 

+0.35 +7.60 
-0 .02  +1.28 
-0.20 -1.80 
-0 .25  -2 .73  
-0.22 -2.55 
-0 .16  - 1 . 9 6  
-0.11 - 1.36 
-0.07 -0.85 
-0.03 -0.48 
-0 .02  -0 .23  
+0.03 +0.00 
+0.02 +0.02 

[] 
B a ( × 1 0 4 a o  2) (Xoyt,.) 

-0 .27  -3 .29  
-0 .19  -2 .17  
-0 .12  -1 .31 
-0 .07  - 0 . 7 4  
-0 .04  -0 .41 
-0.02 -0.23 
-0 .13  -1 .48  
-0 .08  -0.91 
-0.O4 -0.50 
-0 .02  -0 .26  
-0.05 -0.57 
-0 .03  -0 .31  
-0 .02  -0 .17  

200 

f . . . .  t . . . .  ! . . . .  i . . . .  

0 ' 
0 2 3 4 

Reciprocal Coordinate, h I 

Fig. 4. The diffuse intensity associated with the Monte Carlo 
simulated alloy computed using the correlation parameters of  
Table l ( a )  and (8) (based on an expansion of  the kinematic 
scattering equation to second order in displacement). The dashed 
line represents an exact calculation of  the diffuse intensity using 
a direct Fourier summation technique. 

r e l a t i o n  A B (xo Xto) implies that, on average, atoms A and 
B separated by the lattice vector (/, 0) tend to move 
either away (as shown in Fig. 5a) or toward each 
other along the x direction, while a positive correla- 
tion means that, on average, the atoms tend to move 
together in either the +x  or - x  direction (Fig. 5b). 
In the simulated distorted crystal we see from Table 
1 (a) that near-neighbour pairs tend to move together, 
while the more distant pairs, along the direction of 
the Hooke's law force, tend to move in opposite 
directions regardless of the identity of the atoms that 
form the pair. This peculiar behaviour can be 
explained by considering the local environment of 
the atoms forming a pair. 

On either side of a pair of atoms that are near 
neighbours there will, on average, be a statistical local 
excess of ' larger' A atoms or 'smaller'  B atoms which 
will tend, respectively, to push the atom pair away 
from or pull the atom pair toward the region that 
contains the excess. In either case, the result is a 
positive displacement correlation as can be seen from 
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the values in the first row of Table l(a) .  Likewise, a 
negative displacement correlation will exist for pairs 
separated by longer distances since an excess of A 
atoms or B atoms in the intervening region will cause 
the pair to move away from or toward each other. 

In the simulation presented here, the crossover 
between positive and negative displacement correla- 
tions occurs at (/, m) = (2, 0) and negative correlations 
persist out to approximately (/, m) = (10, 0). Since (8) 
involves a summation of cosine terms with arguments 
proportional to the interatomic vector length, the 
sharpness of the dark line is determined by the extent 
of negative correlation and the breadth of the diffuse 
bands on either side depends on the number of 
nearest-neighbour correlations that are positive. For 
example, an alloy in which positive displacive correla- 
tions persist for many neighbours, with few negative 
correlations, will show a relatively broad dark line 
and sharp diffuse bands on either side, whereas an 
alloy with few positive correlations and many nega- 
tive correlations (like the Monte Carlo simulation) 
will display sharp dark lines and broad diffuse bands. 
The relative widths of the diffuse bands and dark 
lines will thus depend on the detailed atomic interac- 
tions in the alloy considered, but the existence of a 
dark line with diffuse bands on either side should be 
a characteristic feature of all alloys with 'size-effect'- 
like distortions. In systems where neighbouring atoms 
are connected by lattice vectors not along the cell 
axes, the R and S sums will mix to produce diffuse 
absences along the direction connecting neighbours 
in the lattice. In such cases, (8) can still be used to 
demonstrate directly the diffuse absences by simply 
reindexing the pattern so that the crystallographic 
axes coincide with near-neighbour directions. 

If the displacive correlations, (XoX~m), where m = 0 
(and by symmetry the correlations, (YoY~,,), with I = 0) 
are the only nonzero correlations in the simulated 
crystal then the diffraction pattern displays only dark 
lines perpendicular to the near-neighbour directions 
thus forming dark 'squares'. There is, however, 
another feature in the computed pattern of Fig. 3 - 
'bow tie'-like figures running along the (11) directions 
and lying near the intersection of the dark lines. This 
must result from the set of correlations associated 
with the Sxy intensity component of (6) since all the 
(XoXtm~ correlations have been accounted for. The 
displacive correlations, (Xoytm), were computed 
directly from the simulated crystal and are presented 
in Table l(b).  These were computed for interatomic 
vectors out to (l, m) = (10, 10) but only those greater 
than 2% are listed. All of the large (XoYlm) correlations 
are found to be negative and, of these, the largest are 
for atom pairs separated by the vector (l, m) = (1, 1). 

A negative (Xoytm) correlation means that the x 
displacement of an atom at the origin of a lattice 
vector (l, m) moves with opposite sign to the y dis- 
placement of the atom at the end of the vector. This 

is demonstrated in Fig. 5(c) for an AB pair separated 
by (l, m) = (1, 1). In this case, the negative correlation 
is shown to result from both the A and B atoms 
moving away from the mutually shared near-neigh- 
bour site. Motions of the A and B atoms toward this 
site would also result in a negative value of (XoYZm~. 
Such correlations are expected from an alloy with 
size-effect-like distortions regardless of the type of 
atoms at the ends of the vector (1, 1) as a 'large' A 
atom at the shared near-neighbour site would tend 
to move both atoms outward and a 'small' B atom 
would tend to draw the atoms inward. Both cases 
correspond to negative (xoyt,,,) correlation. A similar 
argument holds for the other pairs in Table l(b). 

The intensity component, Sxy, involves a sum of 
sine functions so its effect is to transfer diffuse 
intensity from one side of the lines l= in teger  or 
m = integer to the other with maximum effect near 
hi = h 2 .  Negative coefficients to these sine functions 
will produce 'bow tie' figures along the direction (11) 
near the intersections of 'dark lines' (as we find in 
Fig. 3) because intensity from the diffuse bands will 
be transferred from the high-angle to the low-angle 
sides of the dark lines enhancing the observed 
intensity along the hi = h E direction. This mechanism 
is also expected to operate characteristically in other 
alloys that relax through size-effect-like distortions. 
Indeed, in the stabilized zirconia example of Fig. 1 
we do observe 'bow-tie'-like figures at the intersection 
of the dark lines, however, these are oriented at right 
angles to the ones in the simulation of the size effect. 
Bow-tie figures in this orientation will result from 
positive (Xoytm) correlations, like that demonstrated 
in Fig. 5 (d). For a discussion of why these correlations 
are positive in the stabilized zirconia see Welberry, 
Withers, Thomson & Butler (1992). 

3.2. A modulation-wave approach 

An equally general description of diffuse scattering 
can be obtained via a modulation-wave or reciprocal- 
space approach. Let /x label the independent sites 
per average structure primitive unit cell, T the position 
of the particular primitive unit cell, L the atomic 
scattering factor of the/zth site in the average struc- 
ture and T+r~  the position of the /zth site in the 
average structure. Any arbitrary ordering scheme and 
associated structural relaxation can be described in 
terms of such an average structure plus compositional 
and displacive modulations of the form 

t~f~ (T) = Z ~ a~ (q~) exp {2 ~'iqc • T} 

qc (9) 
u~(T) = ~ e~(qa) exp {27riqd" T}, 

qd 

where a~(-qc)=a~(qc)*,  %(- -qa )=%(qd)  * and 
where the summations over qc and qd (C for composi- 
tional modulation and d for displacive modulation) 



B. D. BUTLER, R. L. WITHERS AND T. R. WELBERRY 743 

are understood to range over the whole of the first 
Brillouin zone. The structure-factor amplitude, F(k) ,  
is thus given by 

F(k)=Y.Y.[f~. +Sf,(T)] 
iz T 

x exp {-27rik • [T+  r~. + u~.(T)]}. (10) 

Using the Jacobi-Auger generating relation plus other 
standard mathematical procedures (see, for example, 
Perez-Mato, Madariaga & Tello, 1986) and expanding 
to second order in modulation-wave amplitudes [the 
modulation-wave analogue of the second-moment 
expansion of (2)], one can break down the diffracted 
intensity I (k)  into four parts: 

II(G) = S 2 ~ ~ f~.f~., exp {-27riG • ( r .  - r.,)} 
p, /z '  

x [ i -k)-'. { 2~ 'G.  %(q) 2 
l q 

+ 27rG. %,(q) 2}1 

I2(G+q) = N 2 X X f . f  *, 
tz V~' 

x exp {-21r i (G+q)  • (r .  - r.,)} 

x a~, (q)a~,,(q)* 

i3(G+q) = ½N2 y, Zf~,f,, (11) 
/a, /.t' 

x exp { - 2 ~ i ( G + q )  • (r~, - r~,,)} 

x [ 2 ~ ( G + q ) .  e~,(q)] 

× [27r(G + q ) .  e,,(q)*] 

I4(G+q) = N2X~'.f~,f *, 
/x /x '  

x exp {-27ri (G+q)  • (r~, - r~,,)} 

x[27r a , (q ) (G + q ) .  %(q)* exp {i7r/2} 

+ 27ra,,(q)* ( G + q )  "%,(q) exp {-i7r/2}]. 

The intensity 11 is independent of the atomic ordering 
although not of the associated structural relaxation 
and gives rise to the sharp Bragg reflections of the 
average structure. The three further contributions I2, 
13 and 14 give rise to the diffuse features of reciprocal 
space. The short-range-order term 12 depends solely 
upon the extent of compositional ordering while the 
displacive term 13 depends solely upon the extent of 
displacive modulation or structural relaxation. The 
final part, the 'size-effect' term 14, arises from the 
correlation or coupling between the compositional 
and displacive modulations and gives rise to the well 
known and characteristic effect of transferring 
intensity from regions on one side of Bragg reflections 
to regions on the other. 

If there is only one atom per primitive unit cell, as 
in binary substitutional alloys, these equations can 
be further reduced to give 

I1(G)=N2f2'[1-½~ 27rG'e(q)  2] 

I=(G +q) = N=lf2l la(q) l  = (12) 
13(G+q)=½N 2 f2 27r (G+q) . e (q )  2 

14(G + Q)= 2N=lf2[~e{2 ~r a(q)(G + q). e(q)* 

× exp [ i'n-/2]}. 

The latter three terms are the modulation-wave 
analogue of (3)-(5) above. I2(G+q) corresponds to 
the IS RO term given in (5 a ), 13 (G + q) to those intensity 
components involving R and S terms and I4(G+q) 
to those intensity components involving Q terms. 

From a modulation-wave point of view, further 
progress requires the correlation of the displacive 
modulation-wave amplitudes [the e(q)'s] with the 
corresponding compositional modulation-wave 
amplitudes [the a(q)'s]. How this should be done is 
suggested by the Monte Carlo simulation described 
in the previous section. In the 'first-order size effect' 
described by Welberry (1986), each atom is allowed 
to shift from its mean lattice-site position to alleviate 
the size-effect strain with its nearest neighbours only. 
In modulated-structure language this is equivalent to 
the statement that 

u(T) oc a{ 8 f ( T -  a) - 8f(T + a)} 

+ b{Sf (T-  b) - 8 f (T+ b)}, (13) 

which, in turn, implies that 

e(q) oc a(q) exp {-iTr/2}{a sin (27rq • a) 

+ b  sin (2,rq • b)}, (14) 

where a and b are the unit-cell axes. Within the limits 
of validity of this first-order approximation to the 
correct relationship between e(q) and a(q), it holds 
that 

I4(G +q)oc -la(q)lZ(G + q ) .  {a sin (27rq • a) 

+ b  sin (27rq • b)}, (15a) 

while 

I 4 ( G -  q) oc +la(q)12(G-q). {a sin (27rq. a) 

+ b  sin (27rq • b)}. (15b) 

This is the modulation-wave approach analogue of 
the Qx terms of the real-space approach of the pre- 
vious section and is the mathematical equivalent of 
Fig. l(e)  of Welberry (1986), i.e. intensity is trans- 
ferred from the high-angle side of the Bragg reflec- 
tions to the low-angle side as required. 

Note, furthermore, that 

ex(q) oc a(q) exp {-i(7r/2)} sin (27rq • a) = 0 
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for q parallel to b* and that ey(q)= 0 for q parallel 
to a*. Thus, a compositional modulation with modu- 
lation wave vector q exactly parallel to b* can only 
induce a corresponding displacive modulation polar- 
ized along b, i.e. no corresponding structural relaxa- 
tion along a is allowed. This can be qualitatively 
rationalized as follows. A compositional modulation 
with modulation wave vector q exactly parallel to b* 
must, of necessity, create rows of atom sites along a 
that contain more of either the large or small atoms. 
A corresponding structural relaxation along a, there- 
fore, would necessarily imply macroscopic strain and 
hence does not occur (i.e. has zero amplitude). Since 
I3 (G+q)oc l (G+q) . e (q ) l  2, (14) also provides the 
basis for understanding the presence of the dark line 
in Fig. 3. Thus, within the limits of the above first- 
order approximation, the purely displacive contribu- 
tion to the simulated diffraction pattern takes the form 

I3(h+ qx, k + qy)oc-la(qx, qy)12[(h + qx) sin (2¢rqx) 

+ ( k + qy ) sin (27rqy)] 2 

= -[a(qx,  qy)l 2 

x {[(h + qx) sin (2wqx)] 2 

+ [(k + qy) sin (2wqy)] 2 

+(h+qx)(k+qy) 
x[cos  2W(qx- qy) 
-cos2"a'(qx+qy)]}. (16) 

The first two terms in the above expression are the 
modulation-wave analogue of the R~ term of the 
real-space approach while the latter term corresponds 
to the S~y term. Note that this latter term, for h = k, 
is maximized for qx = qy while, for k = -h ,  it is maxim- 
ized for qx = - q y .  This provides the basis for under- 
standing the origin and relative orientation of the 
'bow ties' observed in the simulated diffuse distribu- 
tion along the h=k and h = - k  directions of 
reciprocal space. The simulated diffuse distribution, 
shown in Fig. 3, corresponds to the t e rm/3 .  

Further iteration, or relaxation, beyond the above 
first-order relaxation means that the displacement of 
any individual atom will become subject to influences 
extending beyond nearest neighbours. The most gen- 
eral extension of the above 'first-order' relationship 
between u(T) and 8f(T) is 

u(T)= E e(AT){Sf(T-AT)-Sf(T+AT)}, (17) 
A T  

where no assumption is made as to the magnitude or 
direction of the influence upon a particular atom at 
T due to neighbouring atoms at T +  AT and T - A T .  
Then 

e(q)=a(q)exp{-i(Tr/2)} Y. e(zaT) sin (2wq. AT). 
A T  

(18) 

In this general case, the 'size effect' term L ( G + q )  
can be written in the form 

I4(G +q)  = -2N2f22zr la(q) l  2 Y, (G + q ) -  e(AT) 
A T  

x sin (2wq. AT), (19) 

while the purely displacive term I3(G+q) can be 
written as 

Is(G +q)  = ½N2f247r2 a(q)] 2 Y~ (G + q ) .  e(AT) 
A T  

x sin (2wq.  T) 

x E ( G + q ) .  e(AT')s in  (2wq-AT' )  
A T '  

(20) 

or, after appropriate manipulation, in a form identical 
to that given in (6) above, 

I3(h"h2)°C47r2f2{h2~[~ ~ex(l',m'),,1, 

Xex(l ' - l ,m'-m)] 

x cos (27rhll) cos (27rh2m) 

+h2~-'[~ m' 

Xey(l'--l, m'-m)] 

x cos (2Whl/) cos (2rrh2m) 

Xey(l'-l, m'-m)] 

x sin (2wha/) sin (27rh2m)}. (21) 
l Now, however, the terms R ' ,  S'y and Ry of §3.1 

above (and tabulated in Tables 1 and 2) are functions 
of e(AT = l a+  mb). 

In reciprocal-space language, the observation of 
the dark line requires that the relationship between 
u(T) and 8f(T) takes the very specific form 

u(T) = ~ ae(m, 0)( ~ f ( T -  ma) - ~f(T + ma)} 
m 

+Y~be(O,n){~f(T-nb)-Sf(T+nb)}, (22) 
tl 

so that 

e(q) = a(q) exp {-i(w/2)}[a{ex(1, 0) sin (27rq- a) 

+ ex(2, 0) sin (2~rq - 2a) + .  • • } 

+b{ey(0, 1) sin (2wq. b) 

+ ey(0, 2) sin (2¢rq • 2b) + .  • • }]. (23) 
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Such an extension of the first-order relaxation main- 
tains the property that ex(q)= 0 for q parallel to b* 
and that ey(q)=0 for q parallel to a* and hence 
maintains the basis for understanding the presence 
of the dark line. It also provides a qualitative descrip- 
tion of how the simulated diffuse distribution comes 
to be localized close to the G + qxa* or G + qyb* lines 
of reciprocal space, i.e. of why the observed diffuse 
intensity occurs where it does. That the e(AT)'s are 
nonzero only along the a and b directions in this 
simulated two-dimensional alloy appears to result 
from the simulated forces on the atoms acting purely 
along the lines of their centres as discussed above. 

4. Discussion 
In the previous sections we described, using both 
correlation-space and modulation-wave approaches, 
what aspects of the two-dimensional simulated alloy 
are responsible for the absence of diffuse intensity 
along particular lines in the diffraction pattern of Fig. 
3. The basic mechanism responsible for these diffuse 
features is that atomic displacements act principally 
along the directions that connect nearest-neighbour 
sites and (in real-space language) are correlated posi- 
tively for nearest-neighbour atom pairs and negatively 

( a ) • l xA xa ~ = _ 
A a ~01~/ 

(b) OB A B - - +  

A B _ 

~O 
( ÷ (d) B XO 

l 
+y 

+x 

Fig. 5. One  o f  the two poss ib le  pa i r  dis tor t ions tha t  result  in 
A B A B (a) a negative (xo Xtm) correlation, (b) a positive (Xo xt,,,) correla- 

tion, (c) a negative (XaoY~,,,) correlation and (d) a positive (xaoff,,,) 
correlation. Reversing the sign of both displacements in each of 
the four eases has no effect on the sign of the correlation 
parameters. 

for more distant pairs regardless of the types of atoms 
that form the pair. Although using Hooke's law forces 
that tend to restore atom pairs to preferred separation 
distances is an oversimplification for most materials, 
the basic forces at play in real systems should pro- 
duce, qualitatively, the same kind of lattice relaxa- 
tions. This should be the case in metallic alloys where 
nearest-neighbour interactions dominate the atomic 
displacements but also in more complicated systems, 
such as the two oxide examples of this paper, where 
more complicated atomic interactions act in concert 
to produce similar effects. These diffraction effects 
should, therefore, be characteristic of all systems in 
which such distortions act. 

Why then have diffuse absences of this kind, which 
are natural manifestations of these distortions, not 
been reported previously? The answer lies with the 
fact that, historically, efforts have been concentrated 
on the determination of local chemical order in 
diffraction studies of disordered systems. In such 
studies the use of atomic species with large scattering- 
factor differences predominates as this greatly 
enhances the diffuse intensity due to short-range 
order. The normal Warren size-effect scattering 
(Warren, Averbach & Roberts, 1951), represented by 
the intensities associated with the Q sums of the 
correlation approach or the intensity component 14 
of the modulation-wave approach, depends on scat- 
tering-factor differences and so will also be large and 
thus hide the weaker scattering effects described here. 
Additionally, this size-effect scattering acts to transfer 
intensity from one side of the planes h = integer to 
the other and so the diffuse band on one side of the 
dark line will be weakened at the expense of the band 
on the other, further obscuring the dark line. Indeed, 
if the scattering factors used in the computation of 
Fig. 3 were substantially different, the dark lines 
would not be visible at all, as demonstrated by 
Welberry (1986). 

Furthermore, size-effect distortions tend to be small 
in alloys composed of neighbouring elements in the 
Periodic Table so in X-ray and electron diffraction 
studies of these alloys the diffuse absences might be 
difficult to observe. (Using neutron diffraction, 
however, it is possible to find atomic species with 
similar scattering length and dissimilar size). In the 
oxide examples of Figs. 1 and 2 it is likely that these 
effects result not from the actual difference in 'sizes' 
(which are small) but because the two metal atoms 
tend to coordinate with oxygen in different ways 
creating, effectively, large size differences. Examples 
of planar diffuse absences are, therefore, likely to be 
shown by other oxide materials. 

The diffuse scattering image of Fig. 3 was computed 
on a Fujitsu VP-2200 supercomputer using a grant 
from the Australian National University Supercom- 
puter Facility. 
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Abstract 

Reflections forbidden by a glide-plane rule are ob- 
served in diffraction experiments with a crystal of 
barium bromate monohydrate using linearly polar- 
ized synchrotron radiation with wavelength near the 
bromine K-absorption edge. Their intensities change 
with azimuth in agreement with equations derived 
using a tensor model of the anomalous scattering of 
the bromate ion and are consistent in scale with earlier 
measurements of that tensor in sodium bromate. The 
intensity of each forbidden hOl reflection gives the 
magnitude and phase of the bromine part of the 
structure factor of the allowed 2h,0,2l reflection. The 
x and z coordinates of the Br atom determined from 
such data for 11 reflections are within 0.02 A of those 
from two crystal structure determinations. 

1. Introduction 

Polarization-dependent absorption of X-rays (dichro- 
ism or pleochroism) has been observed in many 
materials now that synchrotron radiation provides 
polarized beams at the wavelengths near absorption 
edges where this dichroism is most significant (see 
review by Brouder, 1990). With it comes birefringence 
of the complex index of refraction, polarization 

0108-7673/92/050746-06506.00 

anisotropy of the anomalous scattering terms and 
changes of intensities and polarization states of scat- 
tered rays (see, for example, Belyakov & Dmitrienko, 
1989). One result is that some Bragg reflections that 
are forbidden by the ordinary space-group rules for 
screw axes and glide planes can be observed (Temple- 
ton & Templeton, 1980, 1985; Dmitrienko, 1983, 
1984). These effects are new sources of information 
about the structures of crystals. The change of 
intensity of a Bragg reflection with azimuth can be 
used to determine phases of structure factors 
(Templeton & Templeton, 1991) in much the same 
way as the change with wavelength in the absence of 
birefringence (the MAD method). The azimuthal 
intensity variation of reflections forbidden by a screw- 
axis rule in sodium bromate, 001 with I odd, gave the 
phases for 0,0,2l reflections (Templeton & Templeton, 
1987). The intensities of these forbidden reflections 
depend only on the structure of the anisotropic atoms 
and they can be used to determine that partial struc- 
ture (Templeton & Templeton, 1986; Kirfel & Petcov, 
1991). Here we report a study of reflections that are 
forbidden by a glide-plane rule and show how to get 
structure-factor phases from their intensities. The 
experiments were done at the Stanford Synchrotron 
Radiation Laboratory. 
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